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We characterize the set of functions which can be approximated by polynomials
with the following norm

& f &Wk, �([a, b], w) := :

k

j=0

& f ( j)&L�([a, b], wj)
,

for a big class of weights w0 , w1 , ..., wk � 2001 Academic Press.
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1. INTRODUCTION

If I is any compact interval, Weierstrass' theorem says that C(I ) is the
biggest set of functions which can be approximated by polynomials in the
norm L� (I ), if we identify, as usual, functions which are equal almost
everywhere. There are many generalizations of this theorem (see, e.g., the
monograph [L]).

Here we study the same problem with the norm L� (I, w) defined by

& f &L�(I, w) :=ess sup
x # I

| f (x)| w(x), (1.1)

where w is a weight, i.e., a non-negative measurable function, and we use
the convention 0 } �=0. Observe that (1.1) is not the usual definition of
the L� norm in the context of measure theory, although it is the correct
one when we work with weights (see, e.g., [BO]). If w=(w0 , ..., wk) is a
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vectorial weight, we also study this problem with the Sobolev norm
Wk, � (2, w) defined by

& f &Wk, �(2, w) := :
k

j=0

& f ( j )&L�(2, wj ) ,

where 2 :=�k
j=0 supp wj . It is obvious that W0, � (2, w)=L� (2, w).

Weighted Sobolev spaces is an interesting topic in many fields of mathe-
matics (see, e.g., [HKM, K, Ku, KO, KS, and T]). In [ELW1], [EL],
and [ELW2] the authors study some examples of Sobolev spaces for p=2
with respect to general measures instead of weights, in relation with
ordinary differential equations and Sobolev orthogonal polynomials. The
papers [RARP1], [RARP2], [R1], and [R2] are the beginning of a
theory of Sobolev spaces with respect to general measures for 1�p��.
This theory plays an important role in the location of the zeroes of the
Sobolev orthogonal polynomials (see [LP, RARP2, and R1]). The loca-
tion of these zeroes allows us to prove results on the asymptotic behaviour
of Sobolev orthogonal polynomials (see [LP]).

Now, let us state the main results here. We refer to the definitions in the
next section. Throughout the paper, the results are numbered according to
the section where they are proved.

We denote by Pk, � (2, w) (k�0) the set of functions which can be
approximated by polynomials in the norm Wk, � (2, w), where we identify,
as usual, functions which are equal almost everywhere. We must remark
that the symbol Pk, � (2, w) has a slightly different meaning in [RARP1],
[RARP2], [R1], and [R2].

First, we have results for the case k=0.

Theorem 2.1. Let us consider a closed interval I and a weight w # L�
loc(I ),

such that the set S of singular points of w in I has zero Lebesgue measure.
Then we have C�(R) & L�(I, w)=C(R) & L�(I, w)=H, with

H=[ f # C(I"S) & L�(I, w): for each a # S,

_la # R such that ess lim
x # I, x � a

| f (x)&la | w(x)=0],

where the closures are taken in L� (I, w). If a # S is of type 1, we can take
as la any real number. If a # S is of type 2, la=ess limw(x)�=, x � a f (x)
for =>0 small enough. Furthermore, if I is compact we also have
P0, � (I, w)=H.

If f # H & L1 (I ), I is compact, and S is countable, we can approximate f
by polynomials with the norm & }&L�(I, w)+& }&L1(I ) .

The following are two of the main results for k�1.
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Theorem 5.3. Let us consider a compact interval I and a vectorial weight
w=(w0 , ..., wk) # L� (I ) such that w&1

k # L1 (I ). Then we have

Pk, � (I, w)=[ f : I � R �f (k&1) # AC(I ) and f (k) # P0, � (I, wk)].

Theorem 5.4. Let us consider a compact interval I and a vectorial weight
w=(w0 , ..., wk) # L� (I ) such that the set of singular points for wk in I has
zero Lebesgue measure. Assume that there exist a0 # I, an integer 0�r<k,
and constants c, $>0 such that

(1) wj+1 (x)�c |x&a0 | wj (x) in [a0&$, a0+$] & I, for r� j<k,

(2) �I"[a0&=, a0+=] w&1
k <�, for every =>0,

(3) if r>0, a0 is (r&1)-regular.

Then we have

Pk, � (I, w)=[ f : I � R � f (k&1) # ACloc (I"[a0]), f (k) # P0, � (I, wk),

_l # R with ess lim
x # I, x � a0

| f (r) (x)&l | wr (x)=0,

ess lim
x # I, x � a0

f ( j ) (x) wj (x)=0,

for r� j<k if r<k&1, and f (r&1) # AC(I ) if r>0].

This result gives the characterization of Pk, � (I , w) for the case of Jacobi
weights (see Corollary 5.1). There are other characterizations of
Pk, � (I , w) with weaker hypothesis on wk (see Theorems 5.5, 5.6, and 5.7).
There are also results for weights which can be obtained by ``gluing''
simpler ones (see Theorems 5.1 and 5.2).

We have results for non-bounded intervals (see Theorem 6.1 and
Propositions 6.1, 6.2, and 6.3 in Section 6). These results deal with the case
of Laguerre, Freud, and fast decreasing degree weights.

The analogue of Weierstrass' theorem with the norms Wk, p (2, +) (with
1�p<� and + a vectorial measure) can be founded in [RARP2] and
[R2].

Now we present the notations we use.

Notations. Throughout the paper k�0 denotes a fixed natural number.
Also, all the weights are non-negative Borel measurable functions defined
on a subset of R; if a weight is defined in a proper subset E/R, we define
it in R"E as zero. If the weight does not appear explicitly, we mean that
we are using the weight 1. Given 0<m<k, a vectorial weight w and a
closed set E, we denote by Wk, � (E, w) the space Wk, � (2 & E, w| E) and
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by Wk&m, � (2, w) the space Wk&m, � (2, (wm , ..., wk)). We denote by
supp v the support of the measure v(x) dx, i.e., the intersection of every
closed set E�R verifying �R"E v=0. If A is a Borel set, |A|, /

A
, int(A), and

A� denote, respectively, the Lebesgue measure, the characteristic function,
the interior and the closure of A. If I, U are subsets of R, the symbol �IU
denotes the relative boundary of U in I. By f ( j ) we mean the j th distribu-
tional derivative of f. P denotes the set of polynomials. We say that an
n-dimensional vector satisfies a one-dimensional property if each coor-
dinate satisfies this property. Finally, the constants in the formulae can
vary from line to line and even in the same line.

The outline of the paper is as follows. Section 2 is dedicated to the proof
of the theorems in the case k=0. Section 3 presents most of the definitions
we need to state the results in Sections 5 and 6. In Section 4 we collect the
technical results of [RARP1], [RARP2], and [R1] that we need. We
prove the theorems for k�1 in Sections 5 and 6. The results for non-bounded
intervals are proved in Section 6.

2. APPROXIMATION IN L� (I, W )

Definition 2.1. Given a measurable set A, we define the essential
closure of A as the set

ess cl A :=[x # R: |A & (x&$, x+$)|>0, \$>0] .

Definition 2.2. If A is a measurable set, f is a function defined in A
with real values and a # ess cl A, we say that ess limx # A, x � a f (x)=l # R if
for every =>0 there exists $>0 such that | f (x)&l |<= for almost every
x # A & (a&$, a+$). In a similar way we can define ess limx # A, x � a f (x)
=� and ess limx # A, x � a f (x)=&�. We define the essential limit superior
and the essential limit inferior in A as follows:

ess lim sup
x # A, x � a

f (x) := inf
$>0

ess sup
x # A & (a&$, a+$)

f (x),

ess lim inf
x # A, x � a

f (x) :=sup
$>0

ess inf
x # A & (a&$, a+$)

f (x).

If we do not specify the set A we are assuming that A=R.

Remarks.

1. The essential limit inferior (or superior) of a function f does not
change if we modify f in a set of zero Lebesgue measure.
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2. We have

ess lim sup
x # A, x � a

f (x)�ess lim inf
x # A, x � a

f (x),

ess lim
x # A, x � a

f (x)=l if and only if ess lim sup
x # A, x � a

f (x)=ess lim inf
x # A, x � a

f (x)=l.

3. We impose the condition a # ess cl A in order to have the unicity
of the essential limit. If we do not have this condition, then every real num-
ber is an essential limit for any function f.

Definition 2.3. Given an interval I and a weight w in I we say that
a # I� is a singularity of w (or singular for w) in I if

ess lim inf
x # I, x � a

w(x)=0.

We say that a singularity a of w is of type 1 if

ess lim
x # I, x � a

w(x)=0.

In other cases we say that a is a singularity of type 2.

Remark. The set of points which are not singular for w in I is a relative
open set in I.

Lemma 2.1. Let us consider an interval I, a weight w in I, and a point
a # I� which is not singular for w in I. Then there exists $>0 such that every
function in the closure of C(R) with the norm L� (I, w) belongs to
C(I� & [a&$, a+$]).

Remark. Observe that every function in C(I� ) can be extended to a func-
tion in C(R); therefore, the closures of C(R) and C(I� ) with the norm
L� (I, w) are the same. Recall that we identify functions which are equal
almost everywhere.

Proof. We have that

sup
$>0

ess inf
x # I & (a&$, a+$)

w(x)=l>0.

Therefore there exists $>0 with

ess inf
x # I & (a&$, a+$)

w(x)>
l
2

>0.
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Hence, we have

&g&L�(I & (a&$, a+$), w)�
l
2

&g&L�(I & (a&$, a+$))=
l
2

max
x # I� & [a&$, a+$]

| g(x)|,

for every g # C(R). This inequality gives the lemma, since if f is the limit of
functions [gn]/C(R) with the norm in L� (I & (a&$, a+$), w), it can be
modified in a set of zero Lebesgue measure in such a way that it is the
uniform limit of [gn] in I� & [a&$, a+$].

Lemma 2.2. Let us consider an interval I, a weight w in I and a singular
point a of w in I of type 1. Then every function f in the closure of C(R) with
the norm L� (I, w) verifies

ess lim
x # I, x � a

f (x) w(x)=0. (2.1)

Proof. Let us assume that (2.1) is not true, i.e.,

ess lim sup
x # I, x � a

| f (x)| w(x)=l>0.

Therefore for every $>0 we have

ess sup
x # I & (a&$, a+$)

| f (x)| w(x)�l>0.

Since a is of type 1 we deduce

ess lim
x # I & (a&$, a+$)

| g(x)| w(x)=0,

for every g # C(R). This implies that for each g # C(R) and =>0 there exists
$>0 with

ess sup
x # I & (a&$, a+$)

| g(x)| w(x)�=.

Consequently, for this $>0 we have

& f& g&L�(I, w)�& f& g&L�(I & (a&$, a+$), w)

�& f &L�(I & (a&$, a+$), w)&&g&L�(I & (a&$, a+$), w)�l&=,

for every =>0 and g # C(R). Hence we have

& f& g&L�(I, w)�l>0 ,
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for every g # C(R). This implies that f can not be approximated by func-
tions in C(R) with the norm L� (I, w).

Lemma 2.3. Let us consider an interval I and a weight w # L�(I ). Denote
by S the set of singular points of w in I. Assume that a # S is of type 1
and |S|=0. Then, for any fixed =>0 and f # C(I"S) & L�(I, w) with
ess limx # I, x � a f (x) w(x)=0, there exist a relative open interval U in I
with a # U and �IU/I"S (and U/int(I ) if a # int(I )) and a function
g # L�(I, w) & C(U� ) such that g= f in I"U, & f& g&L�(I, w)<= (and
& f& g&L1(I )<= if f # L1 (I )). Furthermore, we can choose g with the addi-
tional condition g(a)=0 or even g(a)=* for any fixed * # R.

Proof. Without loss of generality we can assume that a is an interior
point of I, since the case a # �I is simpler. Take n such that
[a&1�n, a+1�n]/int(I ). Since |S|=0, there exist yn # (a, a+1�n)"S and
xn # (a&1�n, a)"S verifying

| f ( yn)|�2&n+ ess inf
x # [a, a+1�n]

| f (x)| , | f (xn)|�2&n+ ess inf
x # [a&1�n, a]

| f (x)| .

Let us define now the function fn (which is continuous in an open
neighbourhood of [xn , yn], since xn , yn � S) as

fn (x) :={
x&a
xn&a

f (xn) if x # [xn , a],

x&a
yn&a

f ( yn) if x # [a, yn],

f (x) if x # I"[xn , yn].

Observe that | fn (x)|�2&n+| f (x)| for almost every x # [xn , yn]. Hence

& f& fn&L�(I, w)=& f& fn&L�([xn , yn], w)�2 & f &L�([xn , yn], w)+2&n &w&L�(I ) ,

and this last expression goes to 0 as n � �, since ess limx # I, x � a f (x)
w(x)=0. If f # L1 (I ), we also have

& f& fn&L1(I )=& f& fn&L1([xn , yn])�2 & f &L1([xn , yn])+2&n ( yn&xn) ,

and this expression goes to 0 as n � �. Observe that fn (a)=0; it is easy
to modify fn in a small neighbourhood of a in order to have fn (a)=*, for
fixed * # R. This finishes the proof of the lemma.
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Lemma 2.4. If A is a measurable set, we have:

(1) ess cl A is a closed set contained in A� .

(2) |A"ess cl A|=0.

(3) If f is a measurable function in A _ ess cl A, a # ess cl A and there
exists ess limx # ess cl A, x � a f (x), then there exists ess limx # A, x � a f (x) and

ess lim
x # A, x � a

f (x)= ess lim
x # ess cl A, x � a

f (x).

(4) If |A|>0 and f is a continuous function in R we have

& f &L�(A)= sup
x # ess cl A

| f (x)| .

Proof. (1) is direct.

(2) is a consequence of the Lebesgue differentiation theorem, since
we have

lim
$ � 0

1
2$ |

x+$

x&$
/

A
=1,

for almost every x # A, and this implies |A & (x&$, x+$)|>0 for almost
every x # A and every $>0.

Assume now that ess limx # ess cl A, x � a f (x)=l # R. Consequently, for
every =>0 there exists $>0 such that for almost every x # ess cl A &
(a&$, a+$) we have | f (x)&l |<=. Since |A"ess cl A|=0, we have
| f (x)&l |<=, for almost every x # A & (a&$, a+$). This gives (3) if l # R.
The case l=\� is similar.

The statement (2) gives

& f &L�(A)�& f &L�(ess cl A)� sup
x # ess cl A

| f (x)| .

We have | f (x)|�& f &L�(A) for almost every x # A. Then | f (x)|�
& f &L�(A) for every x # ess cl A, since f is continuous. Therefore

sup
x # ess cl A

| f (x)|�& f &L�(A) .

These two inequalities give (4).
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Lemma 2.5. Let us consider an interval I, a weight w in I, and a # I� . If
ess lim supx # I, x � a w(x)=l>0, then for every function f in the closure of
C(R) & L�(I, w) with the norm L�(I, w) there exists the finite limit

ess lim
w(x)�=, x � a

f (x) , for every 0<=<l.

Proof. We have for every $>0

ess sup
x # I & (a&$, a+$)

w(x)�l>0,

and then

|[x # I & (a&$, a+$) : w(x)�=] |>0 ,

for every $>0 and 0<=<l. This implies that a belongs to ess cl A= , where
A= :=[x # I : w(x)�=].

If g # C(R) & L�(I, w), 0<=<l, and $>0, we have

= &g&L�(A= & [a&$, a+$])�&g&L�(A= & [a&$, a+$], w) .

Since ess cl (A= & [a&$, a+$]) is a compact set and g # C(R) & L�(I, w),
Lemma 2.4 (4) gives

= max
x # ess cl (A= & [a&$, a+$])

| g(x)|�&g&L�(A= & [a&$, a+$], w) .

Consequently, if [gn]/C(R) & L�(I, w) converges to f in L�(I, w), then [gn]
converges to f uniformly in ess cl (A= & [a&$, a+$]) and f # C(ess cl (A=

& [a&$, a+$])) for every $>0. Therefore f # C(ess cl A=). This fact and
Lemma 2.4 (3) give that, for 0<=<l, there exists

ess lim
x # A= , x � a

f (x)= ess lim
x # ess cl A= , x � a

f (x)= lim
x # ess cl A= , x � a

f (x).

Lemma 2.6. Let us consider an interval I, a weight w in I, and a singular
point a of w in I. Then every function f in the closure of C(R) & L�(I, w)
with the norm L�(I, w) verifies

inf
=>0

(ess lim sup
w(x)<=, x � a

| f (x)| w(x) )=0. (2.2)

Proof. Observe first that a # ess cl([x # I : w(x)<=]) for every =>0,
since a is singular for w in I. Let us assume that (2.2) is not true, i.e.,

ess lim sup
x # A=

c , x � a
| f (x)| w(x)�l>0,
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for every =>0, where A= :=[x # I : w(x)�=] and Ac
= :=I"A= . Therefore for

every =, $>0 we have

ess sup
x # A=

c
& (a&$, a+$)

| f (x)| w(x)�l>0.

For each g # C(R) & L�(I, w), =>0, and $>0, we have

&g&L�(A=
c

& (a&$, a+$), w)�= &g&L�(I & (a&$, a+$))<� .

Consequently

& f& g&L�(I, w)�& f& g&L�(A=
c

& (a&$, a+$), w)

�& f &L�(A=
c

& (a&$, a+$), w)&&g&L�(A=
c

& (a&$, a+$), w) ,

and therefore

& f& g&L�(I, w)�l&= &g&L�(I & (a&$, a+$)) ,

for every g # C(R) & L�(I, w) and $, =>0. Hence we obtain

& f& g&L�(I, w)�l>0 ,

for every g # C(R) & L�(I, w). This implies that f cannot be approximated
by functions in C(R) & L�(I, w).

Lemma 2.7. Let us consider an interval I, a weight w in I, and a # I� . If
ess limx # I, x � aw(x)=0 and inf=>0 (ess lim supw(x)<=, x � a | f (x)| w(x) )=0,
then we have ess limx # I, x � a f (x) w(x)=0.

Proof. For each '>0 there exist =, $1>0 such that

ess sup
w(x)<=, x # I & (a&$1 , a+$1)

| f (x)| w(x)<'.

We also have that there exists $2>0 such that w(x)<= for almost every
x # I & (a&$2 , a+$2). If we take $ :=min($1 , $2), we obtain

ess sup
x # I & (a&$, a+$)

| f (x)| w(x)� ess sup
w(x)<=, x # I & (a&$1 , a+$1)

| f (x)| w(x)<' ,

and this finishes the proof.

Lemma 2.8. Let us consider an interval I and a weight w # L�(I ). Denote
by S the set of singular points of w in I. Assume that a # S and |S|=0. Then,
for any fixed '>0 and f # C(I"S) & L�(I, w) such that
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(a) inf=>0 (ess lim supw(x)<=, x � a | f (x)| w(x))=0,

(b) there exists the finite limit ess limw(x)�=, x � a f (x), for =>0 small
enough,

there exist a relative open interval U in I with a # U and �IU/I"S (and
U/int(I ) if a # int(I )) and a function g # L�(I, w) & C(U� ) with g= f in
I"U, & f& g&L�(I, w)<' (and & f& g&L1(I )<' if f # L1 (I )). Furthermore, we
can choose g with the additional condition g(a)=ess limw(x)�=, x � a f (x), for
=>0 small enough.

Proof. If a is of type 1, Lemmas 2.3 and 2.7 give the result. Assume now
that a is of type 2. Without loss of generality we can assume that a is an
interior point of I, since the case a # �I is simpler.

We consider first the case ess lim supx�a+ w(x)>0 and ess lim supx�a& w(x)
>0. For each natural number n, let us choose =n>0 with limn � � =n=0
and

ess lim sup
w(x)<=n , x � a

| f (x)| w(x)<
1
n

.

Let us consider now $n>0 with limn � � $n=0 and

ess sup
x # (a&$n , a+$n) & Ac

=n

| f (x)| w(x)<
1
n

, (2.3)

where A= := [x # I : w(x) � =] and A=
c := I"A= . We define l :=

ess limx # A=, x � a f (x), for any =>0 small enough. We can take $n with the
additional property | f (x)&l |<1�n for almost every x # (a&$n , a+$n)
& A=n

. Let us choose #n # (a, a+$n)"S and #$n # (a&$n , a)"S with
| f (#n)&l |<1�n and | f (#$n)&l |<1�n. We define the functions an (x) and
bn (x) in [#$n , #n] as follows:

an (x) :={
l+(x&a)

min[l, f (#n)]&l
#n&a

if x # [a, #n],

l+(x&a)
min[l, f (#$n)]&l

#$n&a
if x # [#$n , a],

and

bn (x) :={
l+(x&a)

max[l, f (#n)]&l
#n&a

if x # [a, #n],

l+(x&a)
max[l, f (#$n)]&l

#$n&a
if x # [#$n , a] .

129WEIERSTRASS' THEOREM IN SOBOLEV SPACES



Now we can define the functions gn # L�(I, w) & C([#$n , #n]) in the following
way:

an (x) if x # [#$n , #n] and f (x)�an (x) ,

gn(x) :={bn (x) if x # [#$n , #n] and f (x)�bn (x) ,

f (x) in other case .

Observe that an (x)�gn (x)�bn (x), |an (x)&l |<1�n, and |bn (x)&l |<1�n,
for every x # [#$n , #n]. Therefore | gn (x)&l |<1�n for x # [#$n , #n] and

& f& gn&L�([#$n , #n] & A=n
, w)�

2
n

&w&L�(I ) . (2.4)

We prove now limn � �& f& gn&L�([#$n , #n], w)=0. The facts

&gn&L�([#$n , #n] & Ac
=n , w)�\ |l |+

1
n+ =n ,

and (2.3) give

& f& gn&L�([#$n , #n] & Ac
=n , w)<

1
n

+\ |l |+
1
n+ =n .

This inequality and (2.4) give

& f& gn&L�([#$n , #n], w)<
1
n

+\ |l |+
1
n+ =n+

2
n

&w&L�(I ) .

If f # L1 (I ), we also have

& f& gn &L1(I )=& f& gn&L1([#$n , #n])

�& f &L1([#$n , #n])+\ |l |+
1
n+ (#n&#$n).

This finishes the proof in this case.
If ess lim supx � a+ w(x)>0 and ess lim supx � a& w(x)=0, we only need

to consider the functions gn for x>a and the functions fn in the proof of
Lemma 2.3 for x<a (recall that we can choose fn with fn (a)=l ).

The case ess lim supx � a+ w(x)=0 and ess lim supx � a& w(x)>0 is
symmetric.

The following result is direct.

Proposition 2.1. Let us consider a sequence of closed intervals [In]n # 4

such that for each n # 4 there exists an open neighbourhood of In which does

130 JOSE� M. RODRI� GUEZ



not intersect �m{n Im . Denote by J the union J :=�n In . Let us consider a
weight w in J. Then we have

C(J ) & L� (J, w)=,
n

C(In) & L� (In , w),

where the closures are taken in L� with respect to w, in the corresponding
interval.

We also have a similar result for contiguous intervals.

Proposition 2.2. Let us consider an interval I and a weight w # L�
loc(I ).

Let us consider an increasing sequence of real numbers [an]n # 4 , where 4
is either Z+, Z&, Z, or [1, 2, ..., N] for some N # N such that
I=�n[an , an+1] and an is not singular for w in I if an is in the interior of
I. Then we have

C� (I ) & L� (I, w)

=C(I ) & L� (I, w)

={ f # ,
n # 4

C([an , an+1]) : f is continuous in each an # int(I )=
={ f # ,

n # 4

C� ([an , an+1]) : f is continuous in each an # int(I )= ,

where the closures are taken in L� with respect to w, in the corresponding
interval.

Remark. We can ensure C� (I ) & L� (I, w)=C� (R) & L� (I, w) if I is
closed. The same is obviously true for C(I ) instead of C� (I ).

Proof. The third equality is true since C� ([an , an+1])=C([an , an+1])
is a direct consequence of Weierstrass' theorem and w # L� ([an , an+1]).

We are going to see that the closure of C� (I ) & L� (I, w) and
C(I ) & L� (I, w) with the norm L� (I, w) is the same. It is enough to prove
that every f # C(I ) can be approximated by functions in C� (I) with the
norm L� (I, w). We can assume that 4=Z, since the argument in the other
cases is simpler. Given =>0 and f # C(I ), for each n # Z, there exists a
function gn # C� (R) with & f& gn&L�([a2n&1 , a2n+2], w)<=�2. Let us consider
functions %n # C � (R) with %n=0 in (&�, a2n&1], %n=1 in [a2n , �) and
0�%n�1.
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We define now a function g # C� (I ) by g(x) :=(1&%n (x)) gn&1 (x)+
%n (x) gn (x), if x # [a2n&1 , a2n+1]. We have

& f& g&L�([a2n&1, a2n], w)�&(1&%n)( f &gn&1)&L�([a2n&1 , a2n], w)

+&%n ( f &gn)&L�([a2n&1 , a2n], w)<=�2+=�2==,

& f& g&L�([a2n, a2n+1], w)=& f& gn&L�([a2n, a2n+1], w)<=�2 ,

and this implies & f& g&L�(I, w)�=.
In order to see the second equality, observe that the ideas above give

that the result is true if it is true for the set 4=[1, 2, 3]. Let us consider
f # C([a1 , a2]) & C([a2 , a3]) and continuous in a2 . Given m # N there exist
functions g1

m # C([a1 , a2]) and g2
m # C([a2 , a3]) with & f& g1

m &L�([a1 , a2], w)+
& f& g2

m&L�([a2 , a3], w)<1�m.
In order to finish the proof it is enough to construct a function

gm # C([a1 , a3]) satisfying the inequality & f& gm&L�([a1 , a3], w)<c�m, where
c is a constant independent of m. We know that there exist positive con-
stants $, c1 , and c2 such that [a2&$, a2+$]�[a1 , a3], | f (x)& f (a2)|
<1�m if |x&a2 |�$ and 0<c&1

1 �w(x)�c2 for almost every x # [a2&$,
a2+$]. Lemma 2.1 gives that f # C([a2&$, a2+$]) and then

| f (x)& g1
m(x)|<c1�m, for every x # [a2&$, a2],

| f (x)& g2
m(x)|<c1�m, for every x # [a2 , a2+$],

and consequently

| g1
m(x)& f (a2)|<(c1+1)�m, for every x # [a2&$, a2],

| g2
m(x)& f (a2)|<(c1+1)�m, for every x # [a2 , a2+$].

Let us define g0
m as the function whose graph is the segment joining the

points (a2&$, g1
m(a2&$)) and (a2+$, g2

m(a2+$)). Then we have

| g0
m(x)& f (a2)|<(c1+1)�m, for every x # [a2&$, a2+$],

| g0
m(x)& f (x)|<(c1+2)�m, for every x # [a2&$, a2+$],

&g0
m& f &L�([a2&$, a2+$], w)<c2 (c1+2)�m.

If we define the function gm # C([a1 , a3]) by

g1
m(x), if x # [a1 , a2&$],

gm (x) :={g0
m(x), if x # [a2&$, a2+$],

g2
m(x) , if x # [a2+$, a3],
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we have

& f& gm&L�([a1 , a3], w)<(c2 (c1+2)+1)�m.

This finishes the proof of Proposition 2.2.

Proposition 2.3. Let us consider a closed interval I and a weight
w # L�

loc(I ) such that the set S of singular points of w in I has zero Lebesgue
measure. Then we have C� (R) & L� (I, w)=C(R) & L� (I, w)=H, with

H :=[ f # C(I"S) & L� (I, w):

for each a # S, inf
=>0

(ess lim sup
w(x)<=, x � a

| f (x)| w(x))=0

and, if a is of type 2,

there exists the finite limit ess lim
w(x)�=, x � a

f (x),

for =>0 small enough],

where the closures are taken in L� (I, w). Furthermore, if I is compact we
also have P0, � (I, w)=H.

If f # H & L1 (I ), I is compact, and S is countable, we can approximate f
by polynomials with the norm & }&L�(I, w)+& }&L1(I ) .

Proof. Lemmas 2.1, 2.2, 2.7, 2.5, and 2.6 give that H contains
C(R) & L� (I, w). In order to see that H is contained in C(R) & L� (I, w),
assume first that I is compact; then w # L� (I ). Fix =>0 and f # H. Lemma
2.8 gives that for each a # S there exist a relative open interval Ua in I with
a # Ua and �I Ua /I"S (and Ua /int(I ) if a # int(I )) and a function
ga # L� (I, w) & C(U� a) such that ga= f in I"Ua and & f& ga&L�(I, w)<=.
The set S is compact since it is a closed set contained in the compact inter-
val I. Therefore there exist a1 , ..., am # S such that S/Ua1

_ } } } _ Uam
.

Without loss of generality we can assume that Ua1
, ..., Uam

is minimal in
the following sense: for each i=1, ..., m the set �j{i Uaj

does not contain
to Uai

.
Define [:i , ;i] :=U� ai

. Assume that we have Uai
& Uaj

{<, with :i<:j .
The minimal property gives U� ai

& U� aj
=[:j , ;i] and [:j , ;i] & Uak

=< for
every k{i, j. We define the functions

gaj , ai
(x) :=gai , aj

(x) :=
;i&x
;i&:j

gai
(x)+

x&:j

; i&:j
gaj

(x) .
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Observe that gai , aj
# C([:j , ;i]) and satisfies gai , aj

(:j)= gai
(:j), gai , aj

(; i)
= gaj

(;i), and

&gaj , ai
& f &L�([:j , ;i], w)�" ;i&x

;i&:j
(gai

(x)& f (x))"L�([:j , ;i], w)

+" x&:j

; i&: j
(gaj

(x)& f (x))"L�([:j , ;i], w)

<2=.

If we define the function g # L� (I, w) & C(I ) as

f (x) if x # I".
i

Uai

g(x) :={gai
(x) if x # Uai

, x � .
j{i

Uaj

gai, aj
(x) if x # Uai

& Uaj
,

we have & f& g&L�(I, w)<2=. If f # L1 (I ) and S is countable, consider
[a1 , a2 , ...]=S. If we take gan

with & f& gan
&L1(I )<2&n=, it is direct that

& f& g&L1(I )<2=. This finishes the proof in this case.
If I is not compact, we can choose an increasing sequence [an]n # 4 of

real numbers, where 4 is either Z+, Z&, or Z such that I=�n [an , an+1]
and an is not singular for w in I if an is in the interior of I. We can take
[an]n # 4 with the following additional property: maxn # 4 an=max I if there
exists max I and minn # 4 an=min I if there exists min I. The first part of
the proof and Proposition 2.2 give the result.

We can reformulate this result as follows.

Theorem 2.1. Let us consider a closed interval I and a weight w # L�
loc(I )

such that the set S of singular points of w in I has zero Lebesgue measure.
Then we have C� (R) & L� (I, w)=C(R) & L� (I, w)=H, with

H=[ f # C(I"S) & L� (I, w) : for each a # S,

_ la # R such that ess lim
x # I, x � a

| f (x)&la | w(x)=0],

where the closures are taken in L� (I, w). If a # S is of type 1, we can take
as la any real number. If a # S is of type 2, la=ess limw(x)�=, x � a f (x)
for =>0 small enough. Furthermore, if I is compact we also have
P0, � (I, w)=H.

If f # H & L1 (I ), I is compact and S is countable, we can approximate f by
polynomials with the norm & }&L�(I, w)+& }&L1(I ) .

134 JOSE� M. RODRI� GUEZ



Remark. If S is the union of a finite number of intervals and a set
of zero Lebesgue measure, Theorem 2.1 and Proposition 2.1 give
C� (R) & L� (I, w).

Proof. We only need to show the equivalence of the following condi-
tions (a) and (b):

(a) for each a # S,

(a.1) inf=>0 (ess lim supw(x)<=, x � a | f (x)| w(x) )=0,

(a.2) if a is of type 2, there exists the finite limit la :=
ess limw(x)�=, x � a f (x), for =>0 small enough,

(b) for each a # S, there exists la # R such that ess limx # I, x � a

| f (x)&la | w(x)=0.

It is clear that (b) implies (a). Hypothesis (a.1) gives that for each '>0,
there exist =, $>0 with & f &L�([a&$, a+$] & [w(x)<=], w)<'�3 and |la |=<'�3.
By hypothesis (a.2) we can choose $ with the additional condition
& f&la&L�([a&$, a+$] & [w(x)�=], w)<'�3. These inequalities imply

& f&la&L�([a&$, a+$], w)�& f &L�([a&$, a+$] & [w(x)<=], w)

+|la | =+& f&la &L�([a&$, a+$] & [w(x)�=], w)<'.

Corollary 2.1. Let us consider a closed interval I and a weight
w # L�

loc(I ) such that the set S of singular points of w in I has zero Lebesgue
measure. If f, g # C(R) & L� (I, w) and . # C(I ) & L� (I ), then we also have
| f |, f+ , f& , max( f, g), min( f, g), .f # C(R) & L� (I, w).

Proof. The characterization of C(R) & L� (I, w) given in Theorem 2.1
or Proposition 2.3 implies the result for | f | and .f. This fact and

max( f, g)=
f +g+| f &g|

2
, min( f, g)=

f +g&| f &g|
2

gives the result for max( f, g) and min( f, g). The facts f+=max( f, 0),
f&=max(&f, 0) finish the proof.

3. PREVIOUS DEFINITIONS FOR SOBOLEV SPACES

Most of our results for k�1 use tools of Sobolev spaces. We include
here the definitions that we need in order to understand these tools.

First of all, we explain the definition of generalized Sobolev space in
[RARP1] for the particular case p=� (the definition in [RARP1] covers
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the cases 1�p��, even if the weights are substituted by measures). One
can think that the natural definition of weighted Sobolev space (the func-
tions f with k weak derivatives satisfying & f ( j )&L�(wj )<� for 0� j�k) is
a good one; however this is not true (see [KO] or [RARP1]). We start
with some previous definitions.

Definition 3.1. We say that two functions u, v are comparable on the
set A if there are positive constants c1 , c2 such that c1�u(x)�v(x)�c2 for
almost every x # A. We say that two norms & }&1 , & }&2 in the vectorial space
X are comparable if there are positive constants c1 , c2 such that
c1�&x&1 �&x&2�c2 for every x # X. We say that two vectorial weights are
comparable if they are comparable on each component. (We use here the
convention that 0�0=1.)

In what follows the symbol a �� b means that a and b are comparable for
a and b functions or norms.

Obviously, the spaces L� (A, w) and L� (A, v) are the same and have
comparable norms if w and v are comparable on A. Therefore, in order to
study Sobolev spaces we can change a weight w by any comparable weight v.

Next, we shall define a class of weights which plays an important role in
our results.

Definition 3.2. We say that a weight w belongs to B� ([a, b]) if
w&1 # L1 ([a, b]). Also, if J is any interval we say that w # B� (J ) if
w # B� (I ) for every compact interval I�J. We say that a weight belongs
to B� (J ), where J is a union of disjoint intervals � i # A Ji , if it belongs to
B� (Ji), for i # A.

Observe that if v�w in J and w # B� (J ), then v # B� (J ).

Definition 3.3. We denote by AC([a, b]) the set of functions
absolutely continuous in [a, b], i.e. the functions f # C([a, b]) such that
f (x)& f (a)=�x

a f $(t) dt for all x # [a, b]. If J is any interval, ACloc (J )
denotes the set of functions absolutely continuous in every compact subin-
terval of J.

Definition 3.4. Let us consider a vectorial weight w=(w0 , ..., wk). For
0� j�k we define the open set

0j :=[x # R : _ an open neighbourhood V of x with wj # B� (V )].

Observe that we always have wj # B� (0j) for any 0� j�k. In fact, 0j

is the greatest open set U with wj # B� (U ). Obviously, 0j depends on w,
although w does not appear explicitly in the symbol 0j . It is easy to
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check that if f ( j ) # L� (0j , wj) with 1� j�k, then f ( j ) # L1
loc(0 j) and

f ( j&1) # AC loc (0j).

Hypothesis. From now on we assume that wj is identically 0 in every
point of the complement of 0j .

We need this hypothesis in order to have complete Sobolev spaces (see
[KO] and [RARP1]).

Remark. This hypothesis is satisfied, for example, if we can modify wj

in a set of zero Lebesgue measure in such a way that there exists a
sequence :nz0 with w&1

j [(:n , �]] open for every n. If wj is lower semi-
continuous, then it satisfies this condition.

The following definitions also depend on w, although w does not appear
explicitly.

Let us consider w=(w0 , ..., wk) a vectorial weight and y # 2. To obtain
a greater regularity of the functions in a Sobolev space we construct a
modification of the weight w in a neighbourhood of y, using the following
version (see a proof in [RARP1, Lemma 3.2]) of the Muckenhoupt
inequality (see [Mu], [M, p. 44]). This modified weight is equivalent in
some sense to the original one (see Theorem A below).

Muckenhoupt inequality I. Let us consider w0 , w1 weights in (a, b).
Then there exists a positive constant c such that

"|
b

x
g(t) dt"L�([a, b], w0)

�c &g&L�([a, b], w1)

for any measurable function g in [a, b], if and only if

ess sup
a<r<b

w0 (r) |
b

r
w&1

1 <�.

Definition 3.5. A vectorial weight w� =(w� 0 , ..., w� k) is a right comple-
tion of a vectorial weight w with respect to y if w� k :=wk and there is an
=>0 such that w� j :=wj in the complement of [ y, y+=] and

w� j :=wj+w~ j , in [ y, y+=] for 0� j<k ,

where w~ j is any weight satisfying:

(i) w~ j # L� ([ y, y+=]),

(ii) 4� (w~ j , w� j+1)<�, with

4� (u, v) := ess sup
y<r< y+=

u(r) |
y+=

r
v&1.
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Muckenhoupt inequality I guarantees that if f ( j ) # L� (wj) and f ( j+1) #
L� (wj+1), then f ( j ) # L� (w� j).

Example. It can be shown that the following construction is always
a completion: we choose w~ j :=0 if w� j+1 � B� (( y, y+=]); if w� j+1 #
B�([ y, y+=]) we set w~ j (x) :=1 in [ y, y+=]; and if w� j+1 # B� (( y, y+=])"
B� ([ y, y+=]) we take w~ j (x) :=1 for x # [ y+=�2, y+=], and

w~ j (x) :=min {1, \|
y+=

x
w� &1

j+1+
&1

= ,

for x # ( y, y+=�2).

Remarks.

1. We can define a left completion of w with respect to y in a sym-
metric way.

2. If w� j+1 # B� ([ y, y+=]), then 4� (w~ j , w� j+1)<� for any weight
w~ j # L� ([ y, y+=]). In particular, 4� (1, w� j+1)<�.

3. If w, v are two vectorial weights such that wj�cvj for 0� j�k and
v� is a right completion of v, then there is a right completion w� of w, with
w� j�cv� j for 0� j�k (it is enough to take w~ j=v~ j). Also, if w, v are com-
parable measures, v� is a right completion of v if and only if it is comparable
to a right completion w� of w.

4. We always have w� k=wk and w� j�wj for 0� j<k.

Definition 3.6. If w is a vectorial weight, we say that a point y # R is
right j-regular (respectively, left j-regular), if there exist =>0, a right com-
pletion w� (respectively, left completion) of w, and j<i�k such that
w� i # B� ([ y, y+=]) (respectively, B� ([ y&=, y])). Also, we say that a
point y # R is j-regular if it is right and left j-regular.

Remarks.

1. A point y # R is right j-regular (respectively, left j-regular), if at
least one of the following properties is verified:

(a) There exist =>0 and j<i�k such that wi # B� ([ y, y+=])
(respectively, B� ([ y&=, y])). Here we have chosen w~ j=0.

(b) There exist =>0, j<i�k, :>0, and $<i& j&1 such that

wi (x)�: |x& y|$, for almost every x # [ y, y+=]

(respectively, [ y&=, y]). See Lemma 3.4 in [RARP1].
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2. If y is right j-regular (respectively, left), then it is also right
i-regular (respectively, left) for each 0�i� j.

3. We can take i= j+1 in this definition since by the second remark
to Definition 3.5 we can choose w� l=wl+1 # B� ([ y, y+=]) for j<l<i, if
j+1<i.

4. If y is not singular for w j , then y # 0j and y is ( j&1)-regular.

When we use this definition we think of a point [b] as the union of
two half-points [b+] and [b&]. With this convention, each one of the
following sets

(a, b) _ (b, c) _ [b+]=(a, b) _ [b+, c){(a, c),

(a, b) _ (b, c) _ [b&]=(a, b&] _ (b, c){(a, c),

has two connected components, and the set

(a, b) _ (b, c) _ [b&] _ [b+]=(a, b) _ (b, c) _ [b]=(a, c)

is connected.
We only use this convention in order to study the sets of continuity of

functions: we want that if f # C(A) and f # C(B), where A and B are union
of intervals, then f # C(A _ B). With the usual definition of continuity in an
interval, if f # C([a, b)) & C([b, c]) then we do not have f # C([a, c]). Of
course, we have f # C([a, c]) if and only if f # C([a, b&]) & C([b+, c]),
where by definition, C([b+, c])=C([b, c]) and C([a, b&])=C([a, b]).
This idea can be formalized with a suitable topological space.

Let us introduce some notation. We denote by 0( j ) the set of j-regular
points or half-points, i.e., y # 0( j ) if and only if y is j-regular, we say that
y+ # 0( j ) if and only if y is right j-regular, and we say that y& # 0( j ) if and
only if y is left j-regular. Obviously, 0(k)=< and 0j+1 _ } } } _ 0k �0( j ).

Remark. If 0� j<k and I is an interval, I�0( j ), then the set
I"(0j+1 _ } } } _ 0k) is discrete (see the remark before Definition 7 in
[RARP1]).

Definition 3.7. We say that a function h belongs to the class
ACloc (0( j )) if h # AC loc (I ) for every connected component I of 0( j ).

Definition 3.8 (Sobolev space). If w=(w0 , ..., wk) is a vectorial
weight, we define the Sobolev space Wk, � (2, w) as the space of equiv-
alence classes of

Vk, � (2, w) :=[ f : 2 � R � f ( j ) # ACloc (0( j )) for 0� j<k and

& f ( j )&L�(2, wj )<� for 0� j�k]
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with respect to the seminorm

& f &Wk, �(2, w) := :
k

j=0

& f ( j )&L�(2, wj ) .

Remark. If we are interested in functions f with complex values, we
only need to apply the results in this paper to the real and imaginary parts
of f.

Definition 3.9. If w is a vectorial weight, let us define the space
K (2, w) as

K (2, w) :=[g: 0(0) � R�g # Vk, � (0(0), w), &g&W k, �(0(0), w)=0].

K (2, w) is the equivalence class of 0 in Wk, � (0(0), w). This concept and
its analogue for 1�p<� play an important role in the general theory of
Sobolev spaces and in the study of the multiplication operator in Sobolev
spaces in particular (see [RARP1], [RARP2], [R1], [R2], and Theorems
A and B below).

Definition 3.10. If w is a vectorial weight, we say that (2, w) belongs
to the class C0 if there exist compact sets Mn , which are a finite union of
compact intervals, such that

(i) Mn intersects at most a finite number of connected components
of 01 _ } } } _ 0k ,

(ii) K (Mn , w)=[0],

(iii) Mn �Mn+1 ,

(iv) �nMn=0(0).

Remarks.

1. Condition (2, w) # C0 is not very restrictive. In fact, the proof
of Theorem A below (see [RARP1, Theorem 4.3]) gives that if 0(0)"
(01 _ } } } _ 0k) has only a finite number of points in each connected
component of 0(0), and K (2, w)=[0], then (2, w) # C0 .

2. The proof of Theorem A below gives that if for every connected
component 4 of 01 _ } } } _ 0k we have K (4� , w)=[0], then (2, w) # C0 .
Condition �4 w0>0 implies K (4� , w)=[0].

3. Since the restriction of a function of K (2, w) to Mn is in
K (Mn , w) for every n, we have that (2, w) # C0 implies K (2, w)=[0].
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4. TECHNICAL RESULTS

In this section we collect the theorems we need in order to prove the
results in Sections 5 and 6.

The next results, proved in [RARP1], [RARP2], and [R1], play a cen-
tral role in the theory of Sobolev spaces with respect to measures (see the
proofs in [RARP1, Theorems 4.3 and 5.1]). We present here a weak ver-
sion of these theorems which are enough for our purposes.

Theorem A. Let w=(w0 , ..., wk) be a vectorial weight. Let Kj be a finite
union of compact intervals contained in 0( j ), for 0� j<k, and w� a right (or
left) completion of w. If (2, w) # C0 , then there exist positive constants
c1=c1 (K0 , ..., Kk&1) and c2=c2 (w� , K0 , ..., Kk&1) such that

c1 :
k&1

j=0

&g( j )&L�(Kj )�&g&Wk, �(2, w) ,

c2 &g&W k, �(2, w� )�&g&Wk, �(2, w) , \g # Vk, � (2, w).

Theorem B. Let us consider a vectorial weight w=(w0 , ..., wk). Assume
that we have either (i) (2, w) # C0 or (ii) 01 _ } } } _ 0k has only a finite
number of connected components. Then the Sobolev space Wk, � (2, w) is
complete.

Remark. See Theorem 5.1 in [RARP1] for further results on complete-
ness.

Lemma 3.3 in [RARP1] gives the following result.

Proposition A. Let w=(w0 , ..., wk) be a vectorial weight in [a, b], with
wk0

# B� ((a, b ]) for some 0<k0�k. If we construct a right completion w�
of w with respect to the point a taking ==b&a, and w� j=wj for k0� j�k,
then there exist positive constants cj such that

cj &g( j )&L�([a, b], w� j )� :
k0

i= j

&g(i )&L�([a, b], wi )
+ :

k0&1

i= j

| g (i ) (b)|,

for all 0� j<k0 and g # Vk, � ([a, b], w). In particular, there is a positive
constant c such that

c &g&Wk, �([a, b], w� )�&g&Wk, �([a, b], w)+ :
k0&1

j=0

| g( j ) (b)| ,

for all g # Vk, � ([a, b], w).

The following is a particular case of Corollary 4.3 in [RARP1].
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Corollary A. Let us consider a vectorial weight w=(w0 , ..., wk). Let
Kj be a finite union of compact intervals contained in 0( j ), for 0� j<k. If
(2, w) # C0 , then there exists a positive constant c1=c1 (K0 , ..., Kk&1) such
that

c1 :
k&1

j=0

&g( j+1)&L1(Kj )�&g&W k, �(2, w) , \g # V k, � (2, w).

A simple modification in the proof of Corollary A gives Corollary B.
Recall that we use Wk&m, � (2, w) to denote the Sobolev space
Wk&m, � (2, (wm , ..., wk)).

Corollary B. Let us consider a vectorial weight w=(w0 , ..., wk). For
some 0<m�k, assume that (2, (wm , ..., wk)) # C0 . Let K be a finite union of
compact intervals contained in 0(m&1). Then there exists a positive constant
c1=c1 (K ) such that

c1 &g&L1(K )�&g&Wk&m, �(2, w) , \g # Vk&m, � (2, w).

Theorem 3.1 in [RARP2] and its remark give the following result.

Theorem C. Let us consider a vectorial weight w=(w0 , ..., wk) with
(2, w) # C0 . Assume that K is a finite union of compact intervals J1 , ..., Jn and
that for every Jm there is an integer 0�km�k verifying Jm �0(km&1), if
km>0, and �Jm

wj=0 for km< j�k, if km<k. If w j # L� (K ) for 0< j�k,
then there exists a positive constant c0 such that

c0 & fg&W k, �(2, w)�& f &W k, �(2, w) (sup
x # 2

| g(x)|+&g&Wk, �(2, w)) ,

for every f, g # Vk, � (2, w) with g$= g"= } } } = g(k)=0 in 2"K.

Corollary 3.1 in [RARP2] implies the following result.

Corollary C. Let us consider a vectorial weight w=(w0 , ..., wk) in
(a, b) with wk # B� ([a, b]), w # L� ([a, b]) and K ([a, b], w)=[0]. Then
there exists a positive constant c0 such that

c0 & fg&Wk, �([a, b], w)�& f &Wk, �([a, b], w) &g&W k, �([a, b], w)

for every f, g # Vk, � ([a, b], w).

The following result is easy to prove.
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Lemma A. Let us consider w=(w0 , ..., wk) a vectorial weight with

wj+1 (x)�c1 |x&a0 | wj (x),

for 0� j<k, a0 # R and x in an interval I. Let . # C k (R) be such that
supp .$�[*, *+t], with max[ |*&a0 |, |*+t&a0 |]�c2 t and &.( j )&L�(I )

�c3 t&j for 0� j�k. Then, there is a positive constant c0 which is independent
of I, a0 , *, t, w, ., and g such that

&.g&Wk, �(2, w)�c0&g&Wk, �(I, w) ,

for every g # Vk, � (2, w) with supp(.g)�I.

Remark. The constant c0 can depend on c1 , c2 , c3 and k.

The next result is the version for p=� of Corollary 3.2 in [R1]. It can
be proved as in the case 1�p<�.

Corollary D. Let us consider a compact interval I and a vectorial
weight w=(w0 , ..., wk) # L� (I ). Assume that there exist a0 # I, an integer
0�r<k, and constants c, $>0 such that wj+1 (x)�c |x&a0 | w j (x) in
[a0&$, a0+$] & I, for r� j<k. Then a0 is neither right nor left r-regular.

We define now the following functions,

log1 x=&log x, log2 x=log(log1x), ..., logn x=log(logn&1 x).

A computation involving Muckenhoupt inequality gives the following
result.

Proposition B. Let us consider a compact interval I and a vectorial
weight w=(w0 , ..., wk) # L� (I ). Assume that there exist a0 # I, an integer
0�r<k, n # N, $, ci>0, =i�0, and :i , # i

1 , ..., # i
n # R for r�i�k such that

(i) wi (x) �� e&ci |x&a0|&=i |x&a0 |:i log#1
i

1 |x&a0 | } } } log#n
i

n |x&a0 | for x #
[a0&$, a0+$] & I and r�i�k,

(ii) :i � N if =i=0 and r<i�k.

Then there exists a completion w� of w such that the Sobolev norms
Wk, p (I, w) and Wk, p (I, w� ) are comparable and there exists r�r0�k with
w� j+1 (x)�c |x&a0 | w� j (x) in [a0&$, a0+$] & I, for r0� j<k if r0<k,
and wr0

# B� ([a0&$, a0+$] & I ). In particular, a0 is (r0&1)-regular if
r0>0.
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5. APPROXIMATION IN WK, � (I, W )

First of all, the next results allow us to deal with weights which can be
obtained by ``gluing'' simpler ones.

Theorem 5.1. Let us consider &��a<b<c<d��. Let w=
(w0 , ..., wk) be a vectorial weight in (a, d ) and assume that there exists an
interval I�[b, c] with w # L� (I ) and (I, w) # C0 . Then f can be
approximated by functions of C� (R) in Wk, � ([a, d], w) if and only if it
can be approximated by functions of C� (R) in Wk, � ([a, c], w) and
Wk, � ([b, d], w).

Remark. If a, d # R and w # L� ([a, d]), the result is also true with P
instead of C� (R). This is a consequence of Bernstein's proof of
Weierstrass' theorem (see, e.g., [D, p. 113]), which gives a sequence of
polynomials converging uniformly up to the k th derivative for any function
in Ck ([a, d]).

Proof. [:, ;]�I prove the non-trivial implication. Let us consider J=
[:, ;]/I and an integer 0�k1�k, such that J/(b, c)k1

�(b, c) (k1&1) if
k1>0, and �J wj=0 for k1< j�k if k1<k.

Let us consider f # Vk, � ([a, d], w) and .1 , .2 # C� (R) such that
.1 approximates f in Wk, � ([a, c], w) and .2 approximates f in
Wk, � ([b, d], w).

Set % # C� (R) a fixed function with 0�%�1, %=0 in (&�, :] and
%=1 in [;, �). It is enough to see that %.2+(1&%) .1 approximates f in
Wk, � ([a, d], w) or, equivalently, in Wk, � (I, w). Theorem C with 2=I
and K=J gives

& f&%.2&(1&%) .1 &Wk, �(I, w)

�&%( f &.2)&W k, �(I, w)+&(1&%)( f &.1)&Wk, �(I, w)

�c(& f&.2 &Wk, �(I, w)+& f&.1 &W k, �(I, w)),

and this finishes the proof of the theorem.

Theorem 5.2. Let us consider strictly increasing sequences of real num-
bers [an], [bn] (n belonging to a finite set, to Z, Z+, or Z&) with an+1<bn

for every n. Let w=(w0 , ..., wk) be a vectorial weight in (:, ;) :=�n (an , bn)
with &��:<;��. Assume that for each n there exists an interval
In �[an+1 , bn] with w # L� (In) and (In , w) # C0 . Then f can be approxi-
mated by functions of C� (R) in Wk, � ([:, ;], w) if and only if it can be
approximated by functions of C� (R) in Wk, � ([an , bn], w) for each n.
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Proof. We prove the non-trivial implication. Let us consider
.n # C� (R) which approximates f in Wk, � ([an , bn], w). By the proof of
Theorem 5.1 we know that there are %n # C � (R) and positive constants cn

such that

& f&%n .n+1&(1&%n) .n &W k, �(In, w)

�cn (& f&.n&W k, �(In, w)+& f&.n+1&W k, �(In, w)).

Now, given =>0, it is enough to approximate f in [an , bn] with error less
than = min[1, c&1

n , c&1
n&1]�2.

Theorem 5.3. Let us consider a compact interval I and a vectorial weight
w=(w0 , ..., wk) # L� (I ) such that wk # B� (I ). Then we have

Pk, � (I, w)=H3 :=[ f # Vk, � (I, w)� f (k) # P0, � (I, wk)]

=H0 :=[ f # Vk, � (I, w)� f ( j ) # P0, � (I, w j), for 0� j�k ]

=[ f : I � R � f (k&1) # AC(I ) and f (k) # P0, � (I, wk)].

Proof. We prove first H3 �Pk, � (I, w). If f # H3 , let us consider a
sequence [qn] of polynomials which converges to f (k) in L� (I, wk). Let us
choose a # I. Then the polynomials

Qn (x) := f (a)+ f $(a)(x&a)+ } } } + f (k&1) (a)
(x&a)k&1

(k&1)!

+|
x

a
qn (t)

(x&t)k&1

(k&1)!
dt

satisfy

Q( j )
n (x)= f ( j ) (a)+ } } } + f (k&1) (a)

(x&a)k& j&1

(k& j&1)!
+|

x

a
qn (t)

(x&t)k& j&1

(k& j&1)!
dt,

for 0� j<k. Therefore, for 0� j<k,

| f ( j ) (x)&Q ( j )
n (x)|= } |

x

a
( f (k) (t)&qn (t))

(x&t)k& j&1

(k& j&1)!
dt }

�c |
I

| f (k) (t)&qn (t)| wk (t) wk (t)&1 dt

�c & f (k)&qn&L�(I, wk) .
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Hence, we have for 0� j<k,

& f ( j )&Q ( j )
n &L�(I, wj )�c & f (k)&qn&L�(I, wk) ,

since wj # L�(I ). Then we have obtained that f # Pk, �(I, w).
Since 0k=int(I ), 01 _ } } } _ 0k=int(I ) is connected and Theorem B

gives that Wk, �(I, w) is complete; therefore Pk, �(I, w)�H0 . The content
H0 �H3 is direct. The last equality is also direct since the fact wk # B�(I )
gives 0(k&1)=I. Then f (k&1) # AC(I ) for every f # Vk, �(I, w).

Theorem 5.4. Let us consider a compact interval I and a vectorial weight
w=(w0 , ..., wk) # L�(I ), such that the set S of singular points for wk in I has
zero Lebesgue measure. Assume that there exist a0 # I, an integer 0�r<k,
and constants c, $>0 such that

(1) wj+1 (x)�c |x&a0 | wj (x) in [a0&$, a0+$] & I, for r� j<k,

(2) wk # B�(I"[a0]),

(3) if r>0, a0 is (r&1)-regular.

Then we have

Pk, �(I, w)=H4 :=[ f # Vk, �(I, w)� f (k) # P0, �(I, wk),

_l # R with ess lim
x # I, x � a0

| f (r) (x)&l | wr (x)=0,

and ess lim
x # I, x � a0

f ( j ) (x) wj (x)=0, for r< j<k if r<k&1]

=H0 :=[ f # Vk, �(I, w)� f ( j ) # P0, �(I, wj) , for 0� j�k ]

=[ f : I � R� f (k&1) # ACloc (I"[a0]) , f (k) # P0, �(I, wk) ,

_l # R with ess lim
x # I, x � a0

| f (r) (x)&l | wr (x)=0,

ess lim
x # I, x � a0

f ( j ) (x) w j (x)=0,

for r� j<k if r<k&1, and f (r&1) # AC(I ) if r>0].

Remark. Muckenhoupt inequality I gives that condition wj+1 (x)�
c1 |x&a0 | wj (x) is not as restrictive as it seems, since many weights can be
modified in order to satisfy it (see Proposition B).

Proof. We prove first H4 �Pk, �(I, w). Let us take f # H4 . Without loss
of generality we can assume that a0 is an interior point of I, since the argu-
ment is simpler if a0 # �I. Without loss of generality we can assume also
l=0, since in other case we can consider f (x)&lxr�r ! instead of f (x)
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(recall that w # L�(I )). Consider now a function . # C �
c (R) with .=1 in

[&1, 1], .=0 in R"(&2, 2), and 0�.�1 in R. For each n # N, let us
define .n (x) :=.(n(x&a0)) and hn :=(1&.n) f (r). We have

& f (r)&hn&W k&r, �(I, w)=&.n f (r)&W k&r, �(I, w)

�c0& f (r)&W k&r, �([a0&2�n, a0+2�n], w) ,

since we are in the hypotheses of Lemma A, where *=a0&2�n, t=4�n, and
we consider the interval [a0&2�n, a0+2�n]: observe that |*&a0 |=
|*+t&a0 |=2�n=t�2 and

&. ( j )
n &L�(R)=n j &.( j )&L�(R)

�4k max[&.&L�(R) , &.$&L�(R) , ..., &.(k)&L�(R)] t& j .

Hence, we deduce that & f (r) & hn&W k&r, �(I, w) � 0 as n � �, since
ess limx # I, x � a0

f ( j ) (x) w j (x)=0, for each r� j�k (Lemma 2.2 gives the
result for j=k since hypotheses wr # L�(I ) and (1) give that a0 is a
singularity of type 1 for wk in I ). Therefore, in order to see that f (r) can be
approximated by polynomials in Wk&r, �(I, w) it is enough to see that
each hn can be approximated by polynomials in Wk&r, �(I, w). Consider
weights wn :=(w0 , ..., wk&1 , wk, n) with wk, n :=wk+/[a0&1�n, a0+1�n]�wk . It
is direct that wn # L�(I ) and wk, n # B�(I ). Observe that Corollary 2.1
gives h (k&r)

n # P0, �(I, wk), since h (k&r)
n =(1&.n) f (k)+Fn , with Fn=

&�k&r
i=1 ( k&r

i ) . (i )
n f (k&i ) # C(I ) and 1&.n # C(I ). Hence Theorem 5.3

implies that each hn can be approximated by polynomials in Wk&r, �(I, wn)
and consequently in Wk&r, �(I, w). Therefore, f can be approximated by
polynomials in Wk&r, �(I, w). This finishes the proof if r=0. In other case,
hypotheses (2) and (3) give 0(r&1)=I and consequently f (r&1) # AC(I ).

Without loss of generality we can assume that there exists =>0 such
that [a0&=, a0+=] is contained in the interior of I and wr�1 in
I"[a0&=, a0+=]. In the other case we can change w by w* with wj* :=w j

if j{r and wr* :=wr+/I"[a0&=, a0+=] . It is obvious that it is more com-
plicated to approximate f in Wk, �(I, w*) than in Wk, �(I, w). Therefore,
we have K ([a, b], (wr , ..., wk))=[0] and ([a, b], (wr , ..., wk)) # C0 (see
Remark 2 to Definition 3.10).

Let us consider a sequence [qn] of polynomials converging to f (r) in
Wk&r, �(I, w). Corollary B gives

& f (r)&qn&L1(I )�c & f (r)&qn &W k&r, �(I, w) .
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The polynomials defined by

Qn (x) :=f (a)+ f $(a)(x&a)+ } } } + f (r&1) (a)
(x&a)r&1

(r&1)!

+|
x

a
qn (t)

(x&t)r&1

(r&1)!
dt,

satisfy

& f&Qn&W k, �(I, w)�c & f (r)&qn &L1(I )+& f (r)&qn&W k&r, �(I, w)

�c & f (r)&qn &W k&r, �(I, w) ,

and we conclude that the sequence of polynomials [Qn] converges to f in
Wk, �(I, w).

Since 0k=int(I)"[a0], 01 _ } } } _ 0k has at most two connected com-
ponents and Theorem B gives that Wk, �(I, w) is complete; therefore
Pk, �(I, w)�H0 . Observe that hypotheses wr # L�(I ) and (1) give that a0

is a singularity of type 1 for wj in I, for each r< j�k. By Theorem 2.1
there exists l # R with ess limx # I, x � a0

| f (r) (x)&l | wr (x)=0, if a0 is a
singularity for wr in I; in the other case, it is a direct consequence of the
continuity of f (r) in a0 . This fact and Lemma 2.2 give H0 �H4 . The last
equality is direct by the definition of Vk, �(I, w); it is enough to remark
that Corollary D and (2) give 0(r)=0 (r+1)= } } } =0(k&1)=I"[a0], and
(2) and (3) give 0(r&1)=I if r>0.

If we apply Theorem 5.1, Theorem 5.4, and Proposition B, we obtain the
next result for Jacobi-type weights.

Corollary 5.1. Consider a vectorial weight w such that wj (x) ��

(x&a):j (b&x);j with :j , ;j�0 for 0� j�k. Assume that there exist 0�r1 ,
r2<k such that a is r1 -right regular if r1>0, b is r2 -left regular if r2>0,
and verifying either (i) :j+1�:j+1 for r1� j<k and ; j+1�; j+1 for
r2� j<k, (ii) :j # [0, �)"Z+ for r1< j�k, and ; j # [0, �)"Z+ for
r2< j�k. Then

Pk, �([a, b], w)

=[ f # Vk, �([a, b], w) � f ( j ) # P0, �([a, b], wj), for 0� j�k].

Remark. The same argument gives a similar result if there are also a
finite number of singularities in (a, b), and even if the singularities in [a, b]
are of more general type (as in Proposition B).
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Lemma 5.1. Consider a weight w # B�([a&2$, a+2$]"[a])&L�([a&2$,
a+2$]) and a function f # ACloc ([a&2$, a+2$]"[a]), continuous in a and
verifying f $ # P0, �([a&2$, a+2$], w). Assume that the set S of singular
points of w in [a&2$, a+2$] has zero Lebesgue measure. Then for each
=>0 there exists a function g # AC([a&2$, a+2$]) with g$ # P0, �([a&2$,
a+2$], w), such that g= f in [a&2$, a&$] _ [a+$, a+2$] and

& f& g&L�([a&2$, a+2$])+& f $& g$&L�([a&2$, a+2$], w)<= .

Remark. Similar results are true in the intervals [a&2$, a] and
[a, a+2$].

Proof. Theorem 2.1 gives that there exists l # R with ess limx � a

| f $(x)&l | w(x)=0. Without loss of generality we can assume that l=0,
since in the other case we can consider f (x)&lx instead of f (x). We
construct the function g in the interval [a&2$, a]. The construction in
[a, a+2$] is symmetric. If f $ # L1 ([a&2$, a]), we take g= f in
[a&2$, a]. If f $ � L1 ([a&2$, a]), the facts f (x)=�x

a&2$ f $ for x #
[a&2$, a) and f continuous in a give that ( f $)+ , ( f $)& # L1

loc([a&2$, a))"
L1 ([a&2$, a]).

Assume now that a # ess cl[x # [a&2$, a): f (x)< f (a)]. If a # ess cl[x #
[a&2$, a): f (x)> f (a)] the argument is symmetric. If a � ess cl[x #
[a&2$, a): f (x)< f (a)] _ ess cl[x # [a&2$, a): f (x)> f (a)] then f (x)=
f (a) for x # [a&$0 , a], which contradicts f $ � L1 ([a&2$, a]).

We claim that a # ess cl[x # [a&2$, a): f (x)< f (a), f $(x)�0]. If it is
not true there exists $1>0 with |[x # (a&$1 , a): f (x)< f (a), f $(x)�0]|
=0. Consider x0 # (a&$1 , a) with f (x0)< f (a). Since f is continuous in x0 ,
there exists $2>0 with f (x)< f (a) for x # [x0 , x0+$2). Then f $<0 in
almost every point in [x0 , x0+$2), and consequently f (x)& f (x0)=
�x

x0
f $<0. By this argument it is clear that the set [x # [x0 , a):

f (x)� f (x0)] is open and closed in [x0 , a); therefore f (x)� f (x0)< f (a)
for x # [x0 , a), which contradicts f continuous in a.

Since |S|=0, for each =>0 there exists : # [a&$, a)"S with f (:)<
f (a), f $(:)�0, & f $&L�([:, a], w)<=�4 and | f (x)& f (a)|<=�4 for x # [:, a].
Consider the family of functions p*, + in [:, a] defined as follows: for each
*�0 and 0<+<(a&:)�2, p*, + is the function whose graphic is the seg-
ment joining (:, f $(:)) and (:++, *) in [:, :++], the segment joining
(a&+, *) and (a, 0) in [a&+, a], and is equal to * in [:++, a&+].

It is clear that there exists *�0 and 0<+<(a&:)�2 such that the
function

h*, + (x) :={ f $(x)
min(( f $)+ (x), p*, + (x))

if x # [a&2$, :]
if x # (:, a],
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verifies f (a)& f (:)=�a
: h*, + , since ( f $)+ # L1

loc([a&2$, a))"L1 ([a&2$, a]).
Observe that h*, + # L1 ([a&2$, a]) & P0, �([a&2$, a], w) (see Corollary
2.1 and Theorem 2.1). For this particular choice of * and +, we define
g(x) :=f (a)+�x

a h*, + in [a&2$, a]. We define g in [a, a+2$] in a similar
way. Conditions f (a)& f (:)=�a

: h*, + and h*, += f $ in [a&2$, :] give
g= f in [a&2$, :]. Since h*, + does not change its sign in [:, a], we
have | g(x)& g(a)|�| g(:)& g(a)|=|�a

: h*, + |=| f (a)& f (:)|<=�4 for every
x # [:, a]. Therefore | g(x)& f(x)|<=�2 for x # [:, a] and & f& g&L�([a&2$, a])

<=�2. We also have | g$(x)|�| f $(x)| in [:, a] and therefore

& f $& g$&L�([a&2$, a], w)�2 & f $&L�([:, a], w)<=�2.

This finishes the proof of the lemma.

Theorem 5.5. Let us consider a compact interval I :=[a, b] and a vec-
torial weight w=(w0 , ..., wk) # L�(I ). Assume that there exists a finite set
R/I such that

(1) the points of R are singularities for wk in I,

(2) wk # B�(I"R),

(3) the points of R are not singular for wk&1 in I,

(4) the set S of singular points for wk in I is countable.

Then we have

Pk, �(I, w)=H5 :=[ f # Vk, �(I, w) � f (k) # P0, �(I, wk)

and f (k&1) is continuous in each point of R]

=H0 :=[ f # Vk, �(I, w) � f ( j ) # P0, �(I, wj), for 0� j�k ]

=[ f : I�R � f (k) # P0, �(I, wk) , f (k&1) # AC loc (I"R) ,

and f (k&1) is continuous in each point of R].

Proof. We prove first H5 �Pk, � (I, w). Consider a function f # H5 .
Condition (2) gives f (k&1) # ACloc (I"R). Given n # N, if we apply a finite
number of times Lemma 5.1 (or its remark) to the function f (k&1), we
obtain a function gn # AC(I ) with g$n # P0, � (I, wk) and

& f (k&1)& gn&L�(I )+& f (k)& g$n&L�(I, wk)<
1
n

,
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since f (k&1) is continuous in each point of R, wk # L� (I ) and |S|=0. If
k�2, conditions (2) and (3) give 0(k&2)=I; hence f (k&2) # AC([a, b]) and
the functions

Gn (x) :=f (a)+ f $(a)(x&a)+ } } } + f (k&1) (a)
(x&a)k&2

(k&2)!

+|
x

a
gn (t)

(x&t)k&2

(k&2)!
dt,

verify

f ( j ) (x)&G ( j )
n (x)=|

x

a
( f (k&1) (t)& gn (t))

(x&t)k& j&2

(k& j&2)!
dt,

for 0� j�k&2, if k�2. Consequently, since w # L� (I ), we have for any
k�1

& f&Gn&W k, �(I, w)�c & f (k&1)& gn &L�(I )+& f (k)& g$n&L�(I, wk) � 0,

as n � �. For each n # N, since g$n # L1 (I ), I is compact and S is countable,
by Theorem 2.1 we can approximate g$n by polynomials with the norm
& }&L�(I, wk)+& }&L1(I ) . An integration argument finishes the proof of H5 �
Pk, � (I, w).

Since 0k=int (I )"R, 01 _ } } } _ 0k has at most a finite number of
connected components and Theorem B gives that Wk, � (I, w) is complete;
therefore Pk, � (I, w)�H0 . Let us take f # H0 . Lemma 2.1 and hypothesis
(3) imply that f (k&1) is continuous in each point of R. This gives H0 �H5 .
The last equality is direct by the definition of V k, � (I, w), since (2) gives
0(k&1)=I"R.

Theorem 5.6. Let us consider I :=[a, b] and a vectorial weight
w=(w0 , ..., wk) # L� (I ), with wk # B� ((a, b ]). Assume that a is a
singularity for wk in I, the set of singularities S for wk in I has zero Lebesgue
measure and S & [a, a+=] is countable for some =>0. If k�2, assume also
that a is right (k&2)-regular. Then we have

Pk, � (I, w)=H6 :=[ f # Vk, � (I, w) � f ( j ) # P0, � (I, wj), for j=k&1, k]

=H0 :=[ f # Vk, � (I, w) � f ( j ) # P0, � (I, wj), for 0� j�k]

=[ f : I � R �f (k&2) # AC(I ) if k�2, f (k&1) # ACloc ((a, b])

and f ( j ) # P0, � (I, w j), for j=k&1, k].

Remark. A similar result is true for wk # B� ([a, b)) or wk # B� ((a, b)).
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Proof. We prove first H6 �Pk, � (I, w). Fix a function f in H6 . Take a
closed interval J :=[:, ;]/(a, a+=); we have wk # B� (J ) and therefore
f (k&1) # AC(J ). Without loss of generality we can assume that w0�1
in J, since in other case we can consider w* :=(w0*, w1 , ..., wk) with
w0* :=w0+/

J
, and it is more difficult to approximate f in Wk, � (I, w*)

than in Wk, � (I, w). Remark 2 to Definition 3.10 gives that (J, w) # C0 .
Theorems 5.1 and 5.3 give that it is enough to prove the inclusion in the
interval [a, ;]. Therefore, without loss of generality we can assume that
the set S of singularities for wk in [a, b] is countable. By Theorem 2.1,
there exist lj # R such that ess limx # I, x � a | f ( j ) (x)&lj | w j (x)=0, for
j=k&1, k (if a is not singular for wk&1 in I, this fact is direct for k&1
with lk&1= f (k&1) (a)). Without loss of generality we can assume that
lk&1=lk=0, i.e.,

ess lim
x # I, x � a

| f ( j ) (x)| wj (x)=0, (5.1)

for j=k&1, k, since in the other case we can consider f (x)&
lk&1 (x&a)k&1�(k&1)!&lk (x&a)k�k! instead of f (x). Observe that
wk # B� ((a, b ]) gives f (k&1) # AC loc ((a, b ]).

Let us choose 0<tn�1�n such that a+tn � S and

| f (k&1) (a+tn)|� inf
x # (a, a+1�n]

| f (k&1) (x)|+
1
n

. (5.2)

Choose functions gn verifying gn= f (k) in [a+tn , b], gn # C([a, a+tn]),
| gn |�| f (k)| in [a, a+tn] , and �a+tn

a | gn |<1�n (recall that f (k) is con-
tinuous in a neighbourhood of a+tn by Lemma 2.1). Since |S|=0,
Theorem 2.1 gives gn # P0, � (I, wk). Observe that gn # L1 (I ), since

&gn&L1(I )<
1
n

+|
b

a+tn

| f (k)| wk w&1
k

�
1
n

+& f (k)&L�(I, wk)&w&1
k &L1([a+tn , b])<�.

Define

fn (x) :=f (b)+ } } } + f (k&1) (b)
(x&b)k&1

(k&1)!
+|

x

b
gn (t)

(x&t)k&1

(k&1)!
dt.

Conditions �a+tn
a | gn |<1�n and (5.2) give

| f (k&1)
n (x)|�| f (k&1) (x)|+

2
n

, (5.3)
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for x # (a, a+tn]. By (5.1) we have

& f (k)& f (k)
n &L�(I, wk)=& f (k)& gn&L�(I, wk)�2 & f (k)&L�([a, a+tn], wk) � 0 ,

as n � �. By (5.1) and (5.3), we also have as n � �

& f (k&1)& f (k&1)
n &L�(I, wk&1)

�& f (k&1)&L�([a, a+tn], wk&1)+& f (k&1)
n &L�([a, a+tn], wk&1)

�2 & f (k&1)&L�([a, a+tn], wk&1)+
2
n

&wk&1&L�([a, b]) � 0.

These facts give that limn � � & f (k&1)& f (k&1)
n &W 1, �(I, w)=0. Assume

now k�2. Choose a compact interval J0 /(a, b)=0k ; we have f (k&1) #
AC(J0) and then f belongs to Vk, � ([a, b], w~ ) with w~ =(w0 , ..., wk&2 ,
w~ k&1 , wk) and w~ k&1=wk&1+/

J0
. Observe that K (I, (w~ k&1 , wk))=[0]

and even (I, (w~ k&1 , wk)) # C0 , since 0k=(a, b) (see Remark 2 to Definition
3.10). It is obvious that it is more complicated to approximate f in
Wk, � (I, w~ ) than in Wk, � (I, w). Therefore, without loss of generality we
can assume that (I, (wk&1 , wk)) # C0 .

Since 0(k&1)=(a, b ] and a is right (k&2)-regular, we have 0(k&2)=I,
and hence Corollary B gives

& f (k&1)& f (k&1)
n &L1(I )�c & f (k&1)& f (k&1)

n &W 1, �(I, (wk&1 , wk)) .

It is clear that

fn (x)= f (b)+ } } } + f (k&2) (b)
(x&b)k&2

(k&2)!
+|

x

b
f (k&1)

n (t)
(x&t)k&2

(k&2)!
dt,

and consequently

f ( j ) (x)& f ( j )
n (x)=|

x

b
( f (k&1) (t)& f (k&1)

n (t))
(x&t)k& j&2

(k& j&2)!
dt,

for 0� j�k&2, if k�2. Hence we have that

& f ( j )& f ( j )
n &L�(I, wj )�c & f (k&1)& f (k&1)

n &L1(I )

�c & f (k&1)& f (k&1)
n &W 1, �(I, (wk&1 , wk)) ,

for 0� j�k&2 and we conclude that [ fn] converges to f in Wk, � (I, w).
Therefore, for any k�1, in order to finish the proof of this inclusion it
is enough to find Qn # P with limn � � & fn&Qn &W k, �(I, w)=0. Since S is
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countable and gn # P0, � (I, wk) & L1 (I ), Theorem 2.1 gives that there exists
hn # P with &gn&hn &L�(I, wk)+&gn&hn &L1(I )<1�n. Hence the polynomials

Qn (x) :=f (b)+ } } } + f (k&1) (b)
(x&b)k&1

(k&1)!
+|

x

b
hn (t)

(x&t)k&1

(k&1)!
dt

satisfy the inequality c & fn&Qn&W k, �(I, w)�&gn&hn&L1(I)+&gn&hn&L�(I, wk) ,
and consequently we obtain limn � �& fn&Qn&W k, �(I, w)=0. Therefore
H6 �Pk, � (I, w).

Since 0k=int (I ), 01 _ } } } _ 0k=int(I ) is connected and Theorem B
gives that Wk, � (I, w) is complete; therefore Pk, � (I, w)�H0 . The content
H0 �H6 is direct. The last equality is direct by the definition of Vk, � (I, w),
since 0(k&1)=(a, b ], and 0(k&2)=[a, b] if k�2.

Theorem 5.7. Let us consider I :=[a, b] and a vectorial weight w=
(w0 , ..., wk) # L� (I ), with wk # B� ((a, b ]). Assume that a is a singularity
for wk in I, the set S of singularities for wk in I has zero Lebesgue measure
and S & [a, a+=] is countable for some =>0. If k�2, assume also that
w | [a, a+=] is a right completion of (0, ..., 0, wk&1 , wk). Then we have

Pk, � (I, w)=[ f # Vk, � (I, w) �f ( j ) # P0, � (I, wj), for j=k&1, k].

Remark. A similar result is true for wk # B� ([a, b)) or wk # B� ((a, b)).

Proof. If k=1, the result is a direct consequence of Theorem 5.6.
Assume that k�2. The argument follows the same lines as the one in the
proof of Theorem 5.6. By Theorems 5.1 and 5.3 we can assume that
b=a+=. Given a function f with f ( j ) # P0, � (I, wj), for j=k&1, k, let us
consider the sequence [ fn] in the proof of Theorem 5.6. As in the proof of
Theorem 5.6, we also have f (k&1)

n � f (k&1) in W 1, � (I, w), as n � �.
By Proposition A there is a positive constant c such that

c &g&W k, �(I, w)�&g&W k, �(I, (0, ..., 0, wk&1 , wk))+ :
k&1

j=0

| g( j ) (b)|,

for all g # Vk, � (I, w). Since ( f &fn) ( j ) (b)=0 for 0� j<k, we have

& f& fn&W k, �(I, w)�c & f (k&1)& f (k&1)
n &W 1, �(I, w) ,

and we conclude that [ fn] converges to f in Wk, � (I, w). The proof finishes
with the arguments in the proof of Theorem 5.6.
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6. NON-BOUNDED INTERVALS

Although the main interest in this section is the case of non-bounded
intervals, the following result can be applied to the case of compact
intervals.

Theorem 6.1. Let us consider a vectorial weight w=(w0 , ..., wk). Assume
that there exist a # 2 and a positive constant c such that

c &g&W k, �(2, w)�| g(a)|+| g$(a)|+ } } } +| g(k&1) (a)|+&g(k)&L�(2, wk) ,

(6.1)

for every g # Vk, � (2, w). Then,

Pk, � (2, w)=[ f : 2 � R � f (k) # P0, � (2, wk)].

Proof. We prove the non-trivial inclusion. Let us consider a fixed
function f with f (k) # P0, � (2, wk). Choose a sequence [qn] of polynomials
which converges to f (k) in L� (2, wk). Then the polynomials

Qn (x) :=f (a)+ f $(a)(x&a)+ } } } + f (k&1) (a)
(x&a)k&1

(k&1)!

+|
x

a
qn (t)

(x&t)k&1

(k&1)!
dt

satisfy

c & f&Qn&W k, �(2, w)�& f (k)&Q (k)
n &L�(2, wk)=& f (k)&qn&L�(2, wk) ,

since ( f &Qn) ( j ) (a)=0 for 0� j<k, and we conclude that the sequence of
polynomials [Qn] converges to f in W k, � (2, w).

We show now that Theorem 6.1 is very useful finding a wide class of
measures satisfying (6.1). The following inequality is similar to the Muck-
enhoupt inequality which can be found in [Mu] and [M, p. 40].

Proposition (Muckenhoupt inequality II). Let us consider two weights
w0 , w1 in (0, �). Then there exists a positive constant c such that

"|
x

0
g(t) dt"L�([0, �), w0)

�c &g&L�([0, �), w1) (6.2)
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for any measurable function g in (0, �), if and only if

B :=ess sup
r>0

w0 (r) |
r

0
w1 (t)&1 dt<�.

Furthermore, the best constant c in (6.2) is B.

Remark. A similar result is true for the intervals (a, �) and (&�, a),
with a # R.

Proof. Assume that B<�. We have

} |
r

0
g(t) dt } w0 (r)�|

r

0
| g(t)| w1 (t) w1 (t)&1 dt w0 (r)

�&g&L�([0, r], w1) w0 (r) |
r

0
w1 (t)&1 dt,

and this implies (6.2) with c=B. If (6.2) holds, the choice of the function
g :=w&1

1 gives B�c<�.

Lemma 6.1. Assume that w0 (x)�c0 x:0e&*x= and w1 (x)�c1x:1e&*x=
, for

x�A, w0 # L� ([0, A]), w1 # B� ([0, A]), with *, =, c0 , c1 , A>0 and
:0 , :1 # R. If :0�:1+=&1, then w0 , w1 satisfy Muckenhoupt inequality II.

Proof. First of all observe that

(xaebx=
)$=xa&1ebx=

(a+b=x=) .

This implies (xaebx=
)$ �� xa+=&1ebx=

, as x � �, if b>0. Therefore

|
r

A
xaebx= dx �� ra+1&=ebr=

,

as r � �. Hence, we have as r � �

|
r

0
w1 (x)&1 dx �� |

r

A
w1 (x)&1 dx�c |

r

A
x&:1e*x= dx �� r&:1+1&=e*r=

.

The expression w0 (r) �r
0 w&1

1 is bounded for r in a compact set; it is
bounded for big r, if

lim
r � �

r:0e&*r=r&:1+1&=e*r=
<� .

This condition holds since :0�:1+=&1.
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Lemma 6.2. Assume that w0 (x)�k0 x;0 and w1 (x)�k1x;1, for 0<x<b,
with k0 , k1>0, ;0>0 and ;1 # R. If ;0�;1&1, then w0 , w1 satisfy
Muckenhoupt inequality I, with a=0.

Proof. If ;1>1, we have

|
b

r
w1 (x)&1 dx�c |

b

r
x&;1 dx �� r1&;1.

If ;1>1, the expression F(r) :=w0 (r) �b
r w&1

1 is bounded for r # [=, b] (with
=>0); it is bounded for r # (0, =), if

lim
r � 0+

r;0r1&;1<� .

This condition holds since ;0�;1&1. If ;1�1, we obtain similarly that
F(r) is bounded since ;0>0 and

F(r)�cr;0 log
1
r

,

for small r.
These lemmas give the following results.

Proposition 6.1. Consider a vectorial weight w in (0, �), with

(1) wj (x)�cj x;j, for 0� j<k, wk (x)�ck x;k, in (0, a),

(2) wj (x)�cj x:+(k& j )(=&1)e&*x=
, for 0� j<k, wk (x)�ckx:e&*x=

,
in (a, �),

where : # R, a, =, *, cj>0 for 0� j�k, and ;j>0 for 0� j<k. If ; j�
;k&(k& j ), for 0� j<k, then

Pk, � ([0, �), w)=[ f : [0, �) � R�f (k) # P0, � ([0, �), wk)].

Proof. An induction argument with Lemma 6.1 in (a, �) instead of
(0, �), gives for 0� j<k and f # Vk, � ([a, �), w),

" f ( j ) (x)& f ( j ) (a)& } } } & f (k&1) (a)
(x&a)k& j&1

(k& j&1)! "L�([a, �), wj )

�c & f (k)&L�([a, �), wk) ,
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and therefore

c & f ( j )&L�([a, �), wj )�& f (k)&L�([a, �), wk)+ :
k&1

i= j

| f (i ) (a)| ,

for 0� j<k and f # Vk, � ([a, �), w). Consequently, we have

c & f &Wk, �([a, �), w)�& f (k)&L�([a, �), wk)+ :
k&1

j=0

| f ( j ) (a)| , (6.3)

for all f # Vk, � ([a, �), w). If we use now Lemma 6.2 in (0, a), a similar
argument gives

c & f &Wk, �([0, a], w)�& f (k)&L�([0, a], wk)+ :
k&1

j=0

| f ( j ) (a)| , (6.4)

for all f # Vk, � ([0, a], w). Theorem 6.1, (6.3), and (6.4) give the proposi-
tion.

Proposition 6.2. Consider a vectorial weight w in R, with

(1) wj (x)�cj |x|:+(k& j )(=&1) e&* |x|=, for 0� j<k, wk (x)�
ck |x|: e&* |x|=

, in (B, �),

(2) wj (x) � cj |x|:$+(k& j )(=$&1) e&*$ |x|=$
, for 0 � j < k, wk (x) �

ck |x|:$ e&*$ |x|=$
, in (&�, &A),

(3) wj (x) # L� ([&A, B]), for 0� j<k, wk (x) # B� ([&A, B]),

where :, :$ # R, A, B, =, =$, *, *$>0 and cj>0, for 0� j�k. Then

Pk, � (R, w)=[ f : R � R� f (k) # P0, � (R, wk)].

Remark. The same result is true if we change R by (0, �).

Proof. The argument is similar to the one in Proposition 6.1, with 0
instead of a. In this case, we only use Lemma 6.1.

We can obtain similar results for weights of fast decreasing degree. The
following results are not sharp since the sharp results are hard to write and
do not involve any new idea.

Define inductively the functions exp*1 , ..., *n
as follows:

exp* (t) :=exp(*t), exp*1 , ..., *n
(t) :=exp(*1 exp*2 , ..., *n

(t)).
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Lemma 6.3. Consider a scalar weight w(x) �� exp&*1 , *2 , ..., *n
(x=) in (0, �),

where we have n>1 and =, *1 , *2 , ..., *n>0. Then w, w satisfy Muckenhoupt
inequality II.

Proof. A straightforward computation shows that the derivative of the
function

x1&= `
n

i=2

exp&*i , *i+1 , ..., *n
(x=),

converges to zero as x � �. Now, if b>0 we have that

d
dx \expb, *2 , ..., *n

(x=) x1&= `
n

i=2

exp&*i , *i+1 , ..., *n
(x=)+ �� expb, *2 , ..., *n

(x=),

in (1, �). Hence we have that

|
r

0
w&1 �� exp*1 , *2 , ..., *n

(r=) r1&= `
n

i=2

exp&*i , *i+1 , ..., *n
(r=),

in (1, �). Therefore

w(r) |
r

0
w&1 �� r1&= `

n

i=2

exp&*i , *i+1, ..., *n
(r=),

in (1, �). This finishes the proof, since w # L� ([0, �)).

Proposition 6.3. Consider a vectorial weight w, with wj (x)�cj

exp&*1 , *2 , ..., *n
( |x| =) in R, for 0� j<k, wk (x)�ck exp&*1 , *2 , ..., *n

( |x| =) in R,
where n>1 and =, *1 , *2 , ..., *n , c0 , c1 , ..., ck>0. Then

Pk, � (R, w)=[ f: R � R� f (k) # P0, � (R, wk)] .

Remark. The same result is true if we change R by (0, �).

Proof. It is enough to follow the argument in the proof of Proposition
6.1, using Lemma 6.3 instead of Lemmas 6.1 and 6.2.
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